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Interaction of N solitons in the massive Thirring model and optical gap system:
The complex Toda chain model
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Using the Karpman-Solov'ev quasiparticle approach for soliton-soliton interaction we show that the train
propagation ol well-separated solitons of the massive Thirring model is described by the complex Toda chain
with N nodes. For the optical gap system a generalizezhintegrable complex Toda chain is derived for
description of the train propagation of well-separated gap solitons. These results are in favor of the recently
proposed conjecture of universality of the complex Toda chain.
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[. INTRODUCTION (nonintegrable complex Toda chain as it is pointed out in
Ref.[8].

Recently the complex Toda chain attracted much attention The complex Toda chain allows a rich class of asymptotic
as a possible candidate for description of the pulse interad€gimes of the soliton train propagati¢8,6,7: (i) asymp-
tions in integrable and nonintegrable nonlinear evolutionttically free propagation of solitongii) N soliton bound
equationg 1—10]. For instance, it was shown that the com- states with the possibility of a quasiequidistant propagation,

lex Toda chain d ibes th liton trai tion f IF“) mixed asymptotic regimes when part of the solitons
piex Toda chain describes the soliton train propagation 1or alt, g states) and the rest separate from thefiy)
the non!_lnf-:-ar evolutlon_ equations ass_omated with the ”O”I'nfegimes corresponding to the degenerate and singular solu-
ear Schrdinger(NLS) hierarchy[9]. Quite recently the com-  tjons of the complex Toda chain. The rich variety of dynami-
plex Toda chain was derived for the modified NUBNLS)  cal regimes of the complex Toda chain indicates that it is a
equation[10], an integrable generalization of the NLS equa-good candidate for analytical study of the soliton trains. Here
tion, which is associated with the quadratic bundle. we should point out that only few simple regimes are exhib-

The complex Toda chain is an integrable generalization ofted by the real Toda chairi3,14], thus it is essential to have

the well-known real Toda chaifisee, for instance, Refs. the complex Toda chain in description of the soliton trains.
[3,4]). In Refs.[3,4,7,1Q the comparison of the complex Moreover, the phase space of the complex Toda ofGIFC)
Toda chain predictions with the numerical solutions of theWith N nodes is N dimensional, which is precisely the num-
NLS and MNLS equations has been performed and a gooBer of real parameters in the train Misolitons.

. . . In the present paper we consider tesoliton train propa-
_agr_eement has been estab_hsheq for various CHOICES 0F trb%\tion governed by two intimately related nonlinear PDEs,
initial parameters of the solitons in the train.

one of which is integrable and the other not: the massive

It is noted that the complex Toda chain arises as an aprhirring model of the classical field theofyt5,16 and the
proximation of the evolution equations describing the inter-pptical gap systerfil7—30.

pulse interaction in the train comprised of well-separated For the massive Thirring model we show that the train
solitons with nearly equal amplitudes and velocities. The expropagation of well-separated solitons with nearly equal am-
ponent of the(negativeé separation between the solitons plitudes and rapidities is governed by the complex Toda
serves as the small parameter for the asymptotic expansiahain. Moreover, we derive a nonintegrable generalization of
and derivation of the complex Toda chain can be based eithehe complex Toda chain, which describes the train propaga-
on the variational approadisee Ref[8]) or on the adiabatic tion of well-separated gap solitons with nearly equal ampli-
perturbation theory for solitongsee, for instance, Refs. tudes and velocities.
[4,10]). However, as noted in Refl11] the variational ap- The gap soliton propagation through a grated optical fiber
proach should be used with care. The approach based on thes manifested in recent experimef84—34. The results of
adiabatic perturbation theory is equivalent to the KarpmanRef. [34] are of particular interest, there thmultiple gap
Solov’ev quasiparticle method for the two-soliton interac- soliton formationwas observed.
tions [12]. This approach was developed in Refs. Localized solutions in nonlinear media with periodic band
[3,4,6,9,10. gaps have a great potential for technological applications.
If the nonlinear partial differential equatidi?’DE) is not ~ One of the most important band gap structures in optics is
integrable but possesses stable soliton solutions, then thigven by an optical fiber with periodic index grating along
train propagation of solitons is described by a generalizedhe axis. From the Floquet-Bloch theory of wave propagation
in periodic structures it is known that there are forbidden
frequency bands or band gaps for linear waves. On the other
*On leave from The Division for Optical Problems in Information hand, nonlinear wave propagation in such structures is pos-
Technologies, National Academy of Sciences of Belarus, Kuprevictsible for the central frequency of the wave packet lying in the
St. 1 block 2, Minsk-41, 220141, Belarus; electronic addressband gap. Such nonlinear wave is usually called gap soliton.
valery@optoinform.bas-net.by The optical gap system was derived within the coupled
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mode approach for nonlinear wave propagation in opticalvith u and v transforming as components of the Lorentz
fibers with grating(see, for instance, Reff28]). It reads spinor,

i(Eyr—Egx) +Ex+(|Eo|*+p|Ey|?)E;1=0, u—e Y, v—e%.
D)

H 2 2 —_

H(Ear+Egx) + Eat+ (|Ea|*+p|Eo|*) E=0, In the relativistic kinematics the parameteis called “ra-

. pidity.” (Rapidities of two consecutive Lorentz transforma-
whereE; andE, are the slowly varying envelopes of twoatti_ons simply add together.

counterpropagating waves coupled through the Bragg sc The massive Thirring modéMTM) is integrable by the

tering induced by the gratingthe linear cross-coupling . . . .
term9, the nonlinear terms account for the self- and cross-g1 r:/(irss(?litso%atst;rllj?i%r:rggr?fgcremw:ﬂteetz@356]. For instance, its
phase modulation effects. The paramegefp>0) at the

self-phase modulation term may range up to infif&§], in i sin(29)exp(—y/2+i0)

which case the optical gap system models dynamics in the = : ,

nonlinear dual-core asymmetric coupfei]. Settingp=0 in coshiz—id)

the system(1) one obtains the massive Thirring model. (©)
The gap solitons in optical fibers were studied theoreti- _isin(29)exp(y/2+i0©)

cally in many workg17-28 (see also the latest review Ref. u= cosl{z+id) '

[29]). Recently, the relevance of the systé¢i for descrip-
tion of the optical gap solitons was analytically and numeri-where 0< 9< 7/2 and
cally validated[30]. The general family of the gap solitons

was derived in Ref[19] using the similarity with the mas- z=sin(23)coshy)[X,(t) —x],
sive Thirring model. After that, thé&-soliton solutions for (4)
the optical gap system were analytically studied via similar O = —cot(29)taniy)z+ &(t).

approach in Ref[36]. Recently, it was shown that the gap

soliton becomes unstable when its amplitude grows abovgne soliton has four independent real parametétsy, X, ,

some fixed valu¢37,38. . o and 8. The first two give the soliton amplitude and rapidity,
The solitonlike solutions, which are similar to the gap while the rest two are the soliton position and central phase

solitons, were found in nonlinear diatomic lattide&9—-41  (the phase ak=x,), respectively. The position and phase
and in the quadraticy(*)) materials with a spatially periodic parameters depend on time,

linear susceptibility(grating [42—49. Also, it was shown

[41,44)] that, at some limit, the equations governing nonlinear X, ds

wave propagation in quadratic media with grating and in W=tanhy, a=—cos{20)sechy. (5)
diatomic lattices are similar to the systeft) though the

underlying physics is different. The first equation defines the soliton velocit4stanhy.

In the following secti_on, Se_c. I, we state the main resul_ts By a suitable Lorentz transformation the rapidity of a
of the paper on the soliton train propagation for the massive.

- X ; irring soliton can be put equal to zero and the soliton
Thirring model and optical gap system. The details of the . . : )

s X ; L solution (3) reduces to the quiescent soliton of the massive
derivation are placed in the following sections: Sec. Il for

: - . Thirring model.
the massive Thirring model and Sec. IV for the optical gap Thegfollowing ansatzis called the soliton train:

system. The last section contains discussion of the results
and suggestions for further work.

% i Sin(29,)exp(—y, /2+i0,)
U= - H L]
Il. MAIN RESULTS a=1 coshiz,—id,)
. : . (6)
Before formulating the main results we would like to re- N .
call some facts about the models under study. Let us begin u= 2 ! 5|r1(219a)exr(¥a/2+|a)
with the massive Thirring model of the classical field theory a=1 coshiz,+i,) ’
(15,16,
) 5 wherez, and® , are given by formulas similar to Eq&})
i(vi—v,)+u+|ul*v=0, and (5). It should be stressed that, for each soliton, all four
) ) 2 soliton parameters in formulg) are considered to bede-
i(u+u)+ov+[v[?u=0, pendent.

The CTC for the MTM soliton trainAssume that the
N-soliton train given by Eq(6) consists of well-separated
pulses with nearly equal amplitudes, and rapiditiesy,, ,

whereu andv are complex variablesandx are the time and
space coordinates, respectively. The sys{@nis Lorentz

nvariant, numerated bye=1,... N in such a way that,,;—X,
x—tanhy)t t—tanky)x >0 (here and below, denotes the position parametet,”
Xy [ A for the ath soliton. Mathematically, these conditions are ex-
(1—tank y)¥?’ (1—tank y)¥?’ pressed as
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| 9= 9|<D,  |Ya—Y[<L, [Xg—Xqx1|>1,

_ _ (7
|sin(29,)coshy ,,—sin(29)coshy||X,— X 4=1| < 1.

Here (and throughout the pape® andy denote the aver-
ages,

N
9= ;l Yo (8)

Z| -

N
1 _
Ngl Jar y=

Define the following new variables: a modified time

7=sin(29)sechiy)t, 9

an average phase
—cog 29)sechiy)t,

5= (10)

and the following complex variable for each soliton:
0,= —sin(29)coshy)x,—i[ 8,— 6—cog 23)sinh(y)x,,
+am]+2ain[2sin29)]. (11)
Then in the first order of the soliton overlap parameter
e= exp[—|sin(29,)coshy,) X,
= SIN(20 4+1)COSHY 4+ 1) Xa 1]} (12)

the following two statements are claimed) the average
values 9 andy do not depend ort; (2) evolution of the

guantitiesq,, =1, ... N, is given by the complex Toda
chain withN nodes,
d’q,,

dr?

:eqoﬁrl_qa—eqa_qa*l, a= 1' . ’N’ (13)

where Réqp} = and Réqy..}=— [i.e., Xo=—2 and
XN+ 1=, See Eq(1D)].

The set of inequalitie§?) is similar to the inequalities for
the NLS soliton train in Ref{4].

Now we will formulate similar result for the train propa-
gation of pulses governed by the optical gap sysf28j,

i(Eg—Eqx) + Ex+(|Eo|?+ p|E4[)E; =0,
_ ) ) (14
i(Egt Epy) +Eq+ (|Eq|*+p|Eo|9)E,=0.

The soliton solution of the optical gap systdf®) moving
with the velocityV=tanhy, reads[19]

(El(x,t))
E,(x,t)

el (v(x,t)

= , (19
[1+ p cosh2y,)]*? u(x,t))

wherev andu have the form of a Thirring soliton, i.e., given
by formulas(3)—(5) (with y—y,); the additionalnonlineaj
phasey is

PHYSICAL REVIEW E 65 046614

2p sinh(2y,)

~ 1+p cosh2y,) (16)

arctaritan< tanhz),

¢:

with z as in Eq.(4).

Here it should be pointed out that the gap soliton becomes
unstable when the soliton amplitude grows above certain
threshold @, ~ /4, see Ref[37]). This scenario is also
possible for the train of gap solitons. This instability is the
result of the soliton-radiation interaction and is beyond the
scope of the adiabatic approach. However, being interested
in stable gap solitons, one can impose the conditify
<O, forall a=1,... N.

The ansatzwe use for the train ofvell-separatedgap
solitons is given by application of the transformatid®) to
the train of well-separated Thirring solitori® this casey,
=y). Due to the inequalitie§7), the additional phase, of
each soliton in the train can be approximated by fornilié
with 9= andz,=sin(29)cosh§)(x,—X).

The generalized CTC for the train of gap solitorss-
sume that the train ofN-gap solitons consists of well-
separated pulses with nearly equal amplitutiesand rapidi-
tiesy, numerated byw=1, ... N in such a way thax,, ;
—X,>0 and that the condition§’) are satisfied. Associate
the following variable with each gap soliton:

Q.= —sin(29)coshy)x,—i{8,— 6—[cog2)
— psin(29)(y,~y)Isinhy)x,+ am}
+2aln[2 sin29)], (17)
where
_4p tanhZ@E
p+sechi2y)

Define the modified time and average phaseas in formu-
las(9) and(10). Then, in the first order of the soliton overlap
parametefe Eq. (12), the following is claimed(1) the aver-
age valuesy andy do not depend oty (2) evolution of the
quantitiesQ,, =1, ... N, is given by the following gen-
eralized complex Toda chain witk nodes,

d’Q,
dr?

:(1+Ap)(eQa+l_Qac— eQa_Qa*l)

+ Bp(eQZ+ 179 —eQu _QZ—l), (18
where R€Qq} = and R¢Qy, 1}=—.

Equation (18) is valid for arbitrary values of the self-
phase modulation parameter

HereA, andB, are p-dependent coefficients

Ap=%{v—K,u,+i[K(l+ v)+ul},
(19
B,=3{v+xu—i[x(1+v)—ul},

with
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ptanh(2y) 49—sin49)

p+sechi2zy) siré(29)

_ 4p(29 cot(29)—1)
© p+sechizy)

14

Settingp=0 in Egs.(17) and(18) one obtains the com-

PHYSICAL REVIEW E65 046614

action of the perturbation onlyn other words, eitheirsu/ 5t
oridv/ dt is nothing but the perturbation added to the respec-
tive right-hand side of the massive Thirring mod@)].
Equations(20)—(26) can also be derived via the perturbation
theory for the Thirring solitons developed in RES1].

From the point of view of the inverse scattering transform
method theansatz(6) contains not only théN-soliton solu-
tion but also the contribution of radiation as well. However,
due to large separations between the solitons in the train, the

p|eX TOda Chain for the Soliton tl’ain Of the maSSiVe Thirring radiation Component is neg||g|b|e ThUS, we can use the adia-

model.

Ill. THE CTC FOR THE MTM SOLITON TRAIN

batic perturbation theory for derivation of evolution equa-
tions for the soliton parametetk, , vy, , X, , andé, . For the
same reason, it is sufficient to consider the interaction be-
tween the neighboring pulses onfgietailed discussion can

We will use the adiabatic perturbation theory for deriva-pa t5und in Ref[4]).

tion of the complex Toda chain. Recently the perturbation

First, one should compute the perturbation functions de-

theory based on the Riemann-Hilbert problem was developeﬁned in Eqs{(25) and(26). Substitution of thensatz(6) into

for the solitons of the massive Thirring mod&l0]. For in-

the massive Thirring moddR) and expansion of the cubic

stance, we have derived the following evolution equation§emg jeads to the following formulas for the perturbation-

for the soliton parameters in the adiabatic approximation,

dd 1 fw dz
dt 2coshy) _.. cosi2z)+coq29

) Refe’[r, (ki,2)

+ri(kT, —2)]}, (20)

dy 1 (= dz ]
dt coshyj,x cosh{2z) + cog29) Im{e”r, (ki,2)
+ri(ky,—2)]-2r(2)}, (21)
dxo Re{J}
_ — hy— ,
dr @ 2 sirf(29)cosit y 22
dé Im{J}+tanhycot(29)Re{J}
T —cog29)sechy— 2 sin29)coshy
(23)
Here
N dz
B J_w cosh2z) +cog29) 212 cos2d)

+isin(2d)tanhy ]+ sinh(2z) }r(z)
+{ecog29)(1—-22)—2izsin(2¥)tanhy]+e %}

X[ri(kliz)_rj(k’]\: 1_2)])' (24)
The functionsr, andr| are given by
e/ s . éu
rl(klazit): 2 klﬁ_kl E ’ (25)
i [dlv]? dlul?
V=g e ) (20

wherek,;= —exp[—y/2—i9}. The “variational” derivatives

denote fictitious evolution of th& and v as if under the

induced evolutiongwe consider the interaction between the
neighboring pulses only

ov
. a_ 2
== 2:1 (lua?v g+2 Refu U%lv,),

(27)

- _ 2 *
i 5 ﬁ:Ea-T—l (Jval ugt+2 Re{vavﬁ}ua),

and, consequently,

v ,|?
= 2ilu,|? Im *1
St Bgﬂ | a| {UaUB}

(28)

8lu,|? .
i |5t| :,B=§();Il 2i[v,|? Im{u,u’}.
Before giving the perturbation-induced evolution of the
soliton parameters some remarks must be made on the details

of the approximation due to the inequaliti€d. The right-
hand sidegrhs’s) in Eq. (27) contain the small parameter
[Eq. (12)]. We consider the soliton-soliton interaction in the
first order with respect t@. Hence, due to the presence of
the small parameter, the differences betweenditiesoliton
amplitude and rapidity and the average values of these quan-
tities [given by Eq.(8)] are negligible in the terms account-
ing for the intersoliton interaction.

Substitution of Egqs(27) and(28) into Egs.(25) and(26)
and the result into Eq920) and (21) gives the following
equations for the amplitudes and rapidities:

do, 2sif(29) ., .
_ = —e ‘AO‘B‘S”T\I’D([;, (29)
dt 55551 coshy
dy,, 4 sgr(A ,5)Si?(29)
Ya _ 94 o) ST )e“Awﬁ‘cos‘Ifaﬁ,
dt B=a+1 COShy
(30)

where

A g=SiN(29)cosy) (Xg—X,),

046614-4
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W op= 00— 0p— coszg)sinr(y)(xa—xﬁ).

Here expt-|A,g)=0(e). It can be easily verified that Egs.

(29 and_(30) do not affect the average amplitud?e and

rapidity y.
The evolution equations for, and 8, [see Eqs(22) and

(23)] are comprised of two addends, which account for the
unperturbed and perturbation-induced evolutigine latter
contain the soliton overlap parametey. Hence, one can

PHYSICAL REVIEW E 65 046614

Differentiatingq, and neglecting the second-order terms, we
get

dq,
dt

= —sin(2d)coshy tanhy,,—i[sin(29)sectty)

X (29,—29)+cog29)sechy tanh(y)(y,—Y)

—cog29)sinhy tanhy,,]

neglect the terms accounting for the perturbation-induceqhere the average phasgeplays an important role for the

evolution of these parameters as compared to their unpe

turbed evolution,

dx“—t h 4% _ 29 h 31
ot _tanhy,, --=—cod2d,)sechy,. (31

Now everything is ready for derivation of the complex

re'xpansion ovef),— ). The second differentiatiofwith re-

moval of the second-order teringives

d?q,

dt?

a

= —(dy, . do
=—S|n(219)sechy)(ﬁ+2l W) (39

Toda chain. Let us differentiate the following quantity At the same time, as it follows from Eq&2) and(33) that

A gtV (B=a*l):
d _ _
gi( T AapT W) =sin2d)seckiy)[ (Yot 2ida)

—(ypt2idy)],

where the second-order terms it {—9) and (y,—Y) are
dropped. On the other hand, from Ed29) and (30) one
derives

4 sgr(A,z)sit(29)
coshy
X exp{sgn(A ,z)(— A,z +i W)},

or using the numeratiorx,,,—X,>0, i.e., sgn\, ,+1)
>0, for the solitons in the train,

d .
Giat2i9,)= 2

B=ax1l

d , 4 sir(29) ,

a(yanL 2|ﬂa)=Tsh7(exp[—AM+l+|\Pm+l}
—eXP{A yo-17 1V 4a-1}). (32)

Introduce an average phase

5= —cog29)sechiy)t,

%[—ya—i(zaa—25)1=sin(25)secm%
X (e%a+1~Ga— gla~Ga-1),
(35
Therefore, what is left is to introduce a new time variable
r=sin(29)secliy)t.

Then Egs(34) and(35) give the complex Toda chain for the
train of Thirring solitons,

d?q,,
d7?

=gdat170e—gde -1 =1, ... N.

Here it is assumed that Re,} =~ and Réqy, 1}=—= (i.e.,
Xg= —% andXyq,=®).

IV. THE GENERALIZED CTC FOR THE TRAIN
OF GAP SOLITONS

In the derivation of the complex Toda chain for the optical
gap system we will use a one-to-one mapping, found re-
cently in Ref.[50], between the optical gap systdit) and
the following generalization of the massive Thirring model,

and the following complex variable associated with eactthe y system for short,

soliton:
q.=— sin(25)cosﬁ?)xa— i[5a—§+ aT
—cog29)sinh(y)x,]+2aIn[2 sin29)].

(The average phase in the formula &gy eliminates the con-

stant phase gradiehfThen

X = (Uqe1— o)1= —4 SiIA(29)
XquIAaatlii\I’aail)-
(33

(V= Vo +U+ U2+ y- (V2= [UH) V=0,

(36)
i (Up+U) +V+ IV 2U+ vy, ([U?—|V?)uU=0.

The transformation relating the two systems is as follows.
Let U(x,t) and V(x,t) be a solution of they system(36)
with the following y-. :

petZy0

1+ p cosh2y,)’ (37)

Y+

then
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( E/(X,T)

el v(x.b) e Yol2)(x,t) quiescent Thirring soliton satisfiés|=|))|. Hence, the last
E2(X,T) '

= 2 terms in they system are small if the solution under study is
[1+p coshi2y,) ]2 7UXD) close to the quiescent Thirring soliton, or, in terms of the
(38) optical gap system, the solution is close to the gap soliton.
where Secon(_:i, the _parameteyg are bounded for all values_tyﬁ,
andp (including p= ). Therefore, the use of the equivalent
X—tanh(y,)T T—tanhy,)X v system aIIow; one to apply_the pertur_ba_tion th_eory devel-
=0, =, (39 oped for the train of almost quiescent Thirring solitons to the
[1—tantf(y,)] [1-tanif(y,)] train of gap solitons foarbitrary values of the self-phase
modulation parametes.
Hence, derivation of the complex Toda chain for the gap
soliton train can be done in much the same way as the deri-
vation of the complex Toda chain for the train of Thirring

is a solution to the optical gap systeih) with the phasay
given by the following system of equatiofis the light-cone
variablesn= (t+x)/2 andé=(t—x)/2]:

o 1 o 1 solitons(more precisely, almost quiescent Thirring solitobns
—==(yi—yIME —=—s(y—y)|U? The only difference is that there are additional small pertur-
dn 2 43 2 (40) bations given by the terms with.. in Eq. (36), the y terms

for short. Let us first calculate their contribution to the evo-
lution of the soliton parameters and then calculate evolution
of q,, defined in a similar way as in the preceding section,
J J with account of these terms as well.

(9—§|V|24r %|U|2=0, Below we will take into account that the gap soliton train

is transformed by the mappin@7)—(40) with y,=y to the
ensures the compatibility of the equations for the phage  train of almost quiescent Thirring solitofis the variables’
Note that the coordinates are related via a Lorentz transandi{). For instance, the latter train hgyo andly,|<1.
formation. The mapping38) can be verified by direct sub- Consider theath soliton in such train. From Eq36) one
stitution into Eq.(1) via simple calculations with the use of gets, expanding the cubic terms,
Egs.(37), (39), and(40).

The presented mapping is valid farbitrary solutions of L0V,
2 (UVp+2 RAUMEIVe) =y (|Vof?

=a¥

(Note that the conservation of the number of particles, i.e.,

the optical gap system. However, the importance of the map-' 5 =~
ping (37)—(40) stems from the fact that by choosing thei-

escenftThirring soliton,
’ “ULSIWVam 2y 2V Vet VIV
B=ax1

_isin29)e”  isin29)e”?
~ coshz—id)’ 7 coshz+id)’ — U ,|?V—2 REUULIV,).
Let us separate the rhs into two parts. The first part is just the

ds
Z=—sin(29)(X—X,), T —cog21), same as in the case of the massive Thirring solitons, while
the second, given by the following formula,

which is a solution to the syste36) due to|V|=|u|, one sV
can recover the optical gap solitanoving with any given |( “) ==y (V2= UNDVa= 2 v (2]Va2V
velocity V=tanhy,. In this case one obtains formul&6) for ot y B=ax1

the additional phaseg. Although the optical gap system is 2y 2,

not Lorentz invariant, still it makes sense to cgll “rapid- FVaVs U V=2 REULEIV.), (4D
ity” of the gap soliton due to the transformati@g87)—(40).

A train of N well-separated gap solitons moving with ar-
bitrary average rapidity, can always be represented via the
transformation(37)—(40) as a train ofN well-separatedl-
most quiescenthirring solitons. Indeed, application of the resultin

. o .l g formulas.
mapping(37)—(40) to Eq. (6) with V=v andi/=u, under the In formula (41) the first term on the rhs is due to the

conditions|y,|<1 andy=0, yields the train ofN well-  self-interaction of the gap solitdidue to they terms in Eq.
separated gap solitons with nearly equal amplitudes and rase), if the rapidityy,,# 0], the rest account for the intersoli-
pidities, where theaveragerapidity is equal to the given ton interaction in the train. The latter terms contain the small
arbitrary valuey,. Moreover, if one neglects the terms of parametere defined in Eq.(12). We will use the same ap-
orderO(e), then the additional phasg, of each gap soliton  proximation that has been used for the derivation of the com-
in the train is determined by E¢16) with evident changes: plex Toda chain for the massive Thirring model. Additionally
99—, z—2z,, andx,—X, . one can neglect the difference between the moduleg, of
Convenience of the system(36) for the analytical study andi/, when calculating the contribution from the intersoli-
of gap solitons is based on the two following facts. First, theton interaction terms. This is because the intersoliton inter-

is due to they perturbation and is specific for the gap soliton
train only. | will consider, in detail, only thes perturbation
since the first part is accounted for in just the same way as
the train of almost quiescent Thirring solitons with the same
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action terms already contain the small parametand|y,|
<1, thus one can pw,=0 there. Then, the “variational”
derivatives simplify considerably,

oV,
. al 2 2
I St ) - 77(|Va| |ua| )Va
Y
_ﬁ;_l Ay_ sin(W ) IM{Vo Uo g} Ve
(42)
[ OU,
I( &) :_7+(|ua|2_|va|2)va
y
_,3:2—1 4y SINY () IM{UoVoglUs
(43)

where Vy,=exp{—i6,}V,, Uss=exp—i6,/U,, and ¥ 4
=0,— 8g. Formula(43) obtains from Eq(42) by the evi-
dent substitution’/— U, UY—V, andy_— v, . Note that from
formulas(42) and (43) it follows that

o

Consider first the contribution to evolution of the soliton
parameters coming from the intersoliton interactipterms,
i.e., the first terms on the rhs’s in formul#&42) and (43).
First, the perturbation functions given in Eq25) and (26)

3 Val?
ot

du,?

ot =0.

Y

must be calculated. The intersoliton interaction terms give

the following contributions to the necessary functions:
ri(z,)=0 and

ri(ka ’Za)+rf(k:k ’_Za)

. sirt(29)e” 12aslsin(¥, )
| —
[cosh2z,)+cog29)]?

B=a+1l

sinh(2z,)

X[(y: =y )€t (y, 0=y e 2)e 2], (49
wherek,= —exp{—y,—i9,} andAaﬁzsin(ZE)(xB—xa). [On
the rhs of Eq.(44) the terms of the second order ih,— ¥
are neglected due to the small multiplier expd ,5/)=0OC(e).]
Now, substitution of the expressida4) into Egs.(20) and
(21) leads to the following contributions to evolution equa-
tions for 9, andy,,:
Sl o
Y

> A4xsir(29)etalsin 4,
B=a+1l

do,
dt

dy,
dt

|

where

,
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ptani(2y) 49—sin49)
sif(29)

p+sechi2y)

What concerns the other two parametggsand §,, simi-
larly as in Sec. lll, the intersoliton interaction is of order
O(e) and its contribution to evolution of the soliton position
and phase can be neglected as compared to their unperturbed
evolution.

Now let us consider the contribution to evolution of the
soliton parameters coming from the self-interactipterms,
i.e., the first terms in Eq$42) and (43). We get the follow-
ing contributions to the functions in Eq&5) and (26):
(45)

rH(Za):Ov rL(kavZa)_I—rI(kZ'_Za):Oa

rJ_(ka 1Za)_rj(k2 ’_Za)

_ 4isif(29,)y,
_[cosr(22a) +cog29,)]?

200 21Va)@ %]

(46)

X[(y-—ys)efat(y_e"

(here it is taken into account that terms of the second order in
y, are negligible. From Eq.(45) it follows that the contri-
butions from the self-interactioy terms to evolution equa-
tions for the amplituded, and rapidityy, vanish, while
substitution of Eqs(45) and (46) into Eq. (24) gives due to
Yol <1,

Jo=2{(y_+y)[2sirF(29,)— 29, sin(49,)]
+i (’y, - ’Y+)219a Sir]Z(Zﬁa)}ya .

Thus the contributions from the self-interactignterms to
evolution ofx, and §,, are determined by the following co-
efficients:

——ﬂ—( +y.)[49, cot(29,)—2]
T 2si20,)y, e oo

L O SNV PP
2t y, )2

Ma=

We can take just the average values of these coefficients
(denoted below ag and u), because the following combi-
nationsv,y, andu by, Will enter the evolution equations for
the soliton parameters ang,|<1. In other words, one can
throw away the terms of the second orderjip— 9 andy,, .
Taking into account the definition of the. , wherey,=vy,

we obtain

_4p tanh 2y)

_ 4p[29 cot29)-1] =
g p+secti2y)

p+secti2y)

Let us collect all the contributions, i.e., the terms same as
for the Thirring soliton trairfsee Eqs(29)—(31)] and those
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accounting for they terms, and write down the correspond-
ing evolution equations for the parameters of tath gap
soliton. They read

dd,
= > 2sirf(29)e Pwlsin, 4, (47)
dt ,B’ a¥1
dy,
gt B2a+ 4 sirf(29)e " Aasl[sgr(A . p)cosV 5
—K Sinqjaﬁ]l (48)
X (14 50
Tt =@+ 0)Ya- (50)
Here

Apg=SiN29)(Xg—Xy), W op=8,— 5.
It is easy to see that the averaggandyare not affected by
Egs.(47) and (48). Equations47)—(50) are similar to those
for the (almost quiescentThirring solitons, however, there
are additional terms in the evolution equations ¥gr, &,,,
andx,, .

Let us now derive the generalized complex Toda chain

corresponding to Eqg47)—(50). As the derivation is quite
similar to that for thequiescent hirring solitons we will skip

some details. As in the case of the massive Thirring model,

introduce the modified time
r=sin(29t,
an average phase
5= —cog2It,
and the complex variable, for each soliton,

—i(8,— 6+ am)+2aln[2 sin29)].
(51)

—sin(29)x,

Differentiating q, and throwing away the second-order

terms, one obtains

dq,

+i[29,—29]}.

ar —{(1+v+ip)y,

Differentiation of this formula gives

d*q, _
dr?

> 4 sgnA,)sind(29)
B a+l

X exXp{SGMA o) (— Aup iV ap)}

_(y+i,u)ReBZil 4 sgrA,)Sirf(29)
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X eXpSA 1) (— A o+ W )}

(1+v+|,u)|m E_ 4 sgrA,z)Sint(29)

—a+

X exp(sgn(A ,p)(— A,z +iV 5},

taking into account the numeration of the solitons in the
train, which is given by,,,—x,>0 orA_,, >0, and the
following identity:

4 Sirf(29)exp{ £ (= Apqe 1+ V¥ 4ae1)}
qu)]-

We obtain a generalized complex Toda chain for the train of
N well-separated gap solitons with nearly equal amplitudes
and rapidities

—exg = (g1~

2

d<q,
dr?

= (1+Ap)(eqa+l_qa— eqa_qa*l)

+B (quH_qZ—qu_qZ—l), (52

whereA, andB,, are p-dependent coefficients
A,= Hv—ku+i[k(1+v)+ul},

= v+ rpu—i[k(1+v)—ul}.

As usual, Réqpt = and Réqy. 1} = —°.

Though in Eq(52) and in the definition 0§, Eqg. (51) we
still have the variables, x,, J,, andé defined through the
coordinatex andt [see formula39)], it is easy to reverse to
the coordinateX andT of the optical gap systeifi). Indeed,
to this end one should use the transformati®8) (with y,

=V) for the positionx, and the central phas&, of the gap
soliton (the phase aX=X,),

X, = coshy)[ X, —tanHy)T], (53)
8o=[—C0%28,)+ psin29)y,]t=[ —cog2,)
+usin(29)y,Jcosy)[T—tanhy)X,].  (54)

Also one must use the time transformatisi= coshg)dt in
the definition ofr and the average phage

r=sin(29)secty)T, =—cog29)sechy)T.

Now it is evident that if Eq(53) is used in the definition of
d.. Eqg.(51), the term linear inm will not contribute to either
the differenceg,— g or the second derivative af, , hence,

it can be dropped. Further, notice that from the rhs of Eq.
(54) only the term linear inT will appear inq,, if one
simply changes the time—sech§)T. Hence, the term pro-
portional toX,, in Eq. (54) must be subtracteftom the cen-
tral phases, . In doing so, one can neglect the difference

betweend, and & due to the inequalitieé7) and that evo-
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lution of ¥, is of order O(e) (i.e., we throw away the the optical gap system. In the present paper this approach is
second-order terms from the second derivative) gf. Thus  further developed and it is shown that the train interaction/
we have arrived precisely at the quant®, given by Eq. propagation oN-gap solitons with nearly equal amplitudes
(17), where the shift of the soliton rapidities is taken into and velocities is governed, in the adiabatic approximation,
account,y,—y+y,. Therefore, the result of Sec. Il is Dy @ generalized complex Toda chain withnodes.
proven. Here we should mention that, due to nonintegrability of
the optical gap system, the train of gap solitons may become
unstable. Such instability can be the result of the soliton-
radiation interaction and is beyond the adiabatic approxima-
The complex Toda chain model proves to be a universalion. However, the gap soliton is stable against the effect of
model for the adiabatic description of the train interaction/radiation if the soliton amplitude lies below the instability
propagation of solitons in nonlinear PDEs. Indeed, it wasthreshold(see for details Ref.37]). For such values of the
shown to describe the train propagation of pulses in the nonsoliton amplitudes, the generalized complex Toda clh8
linear PDEs of the whole NLS hierarch9] (i.e., the PDEs can be applied.
associated with the familiar Zakharov-Shabat spectral prob- Spurious instabilities of the complex Toda chain are also
lem [52,53). More recently, the complex Toda chain was possible for some initial values, as was pointed out in Ref.
derived for the soliton train of the modified NLS equation [4]. Such instabilities do not correspond to instabilites of the
[10]. This PDE is associated with the quadratic bundle, als®oliton train propagation in the original PDE. However, re-
known as the Wadati-Konno-Ichikawa spectral prob[&#].  cently, it was indicate@8] that the generalized complex Toda
In this paper, the complex Toda chain is shown to describehains(for the soliton train propagation in the perturbed NLS
the soliton train propagation in the massive Thirring model.equationy admit more stationary regimes of the train propa-
Note that, as it is mentioned in Refl0], the massive gation than thdintegrableé complex Toda chain does. Simi-
Thirring model is just another representative of the modifiedar fact can be true for the gap soliton train propagation. This
NLS hierarchy. Thus the complex Toda chain arises in thassue is important in view of applications of the gap solitons
adiabatic description of the soliton trains in the hierarchy ofand it will be addressed in a future publication.
nonlinear integrable PDEs associated with the quadratic Though the generalized complex Toda chain is not inte-
bundle as well. This is in favor of the universality of the grable, itis a finite dimensional dynamical system and can be
complex Toda chain. investigated by the standard techniques. Moreover, in accor-
In construction of the perturbation theory for the massivedance with discussion of Ref9], one can systematically
Thirring model we have used the associated Riemann-Hilbeihclude various additional perturbations of the optical gap
problem[50]. The use of the Riemann-Hilbert problem al- system into the complex Toda chain. For instance, to address
lows one to develop the perturbation theory in a unified waythe issue of stability of the soliton train, one can study the
for the entire hierarchysee, for instance, Ref55], where interaction of the solitons in train with radiation waves by
this was done for the vector NLS hierarghiloreover, the using the perturbation theory.
perturbation-induced evolution equations for the spectral
data have one and the same form #&ir integra_ble_PDEs ACKNOWLEDGMENTS
(one can compare the results of R4f6,57)). This gives a
possibility to prove the universality of the complex Toda The author gratefully acknowledges many stimulating dis-
chain using the approach based on the Riemann-Hilbertussions with Professor E. V. Doktorov and Professor V. S.
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In view of recent experimental observati¢84] of the  Gerdjikov for his critical reading of the manuscript. Some
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