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Interaction of N solitons in the massive Thirring model and optical gap system:
The complex Toda chain model
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Using the Karpman-Solov’ev quasiparticle approach for soliton-soliton interaction we show that the train
propagation ofN well-separated solitons of the massive Thirring model is described by the complex Toda chain
with N nodes. For the optical gap system a generalized~nonintegrable! complex Toda chain is derived for
description of the train propagation of well-separated gap solitons. These results are in favor of the recently
proposed conjecture of universality of the complex Toda chain.
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I. INTRODUCTION

Recently the complex Toda chain attracted much atten
as a possible candidate for description of the pulse inte
tions in integrable and nonintegrable nonlinear evolut
equations@1–10#. For instance, it was shown that the com
plex Toda chain describes the soliton train propagation for
the nonlinear evolution equations associated with the non
ear Schro¨dinger~NLS! hierarchy@9#. Quite recently the com-
plex Toda chain was derived for the modified NLS~MNLS!
equation@10#, an integrable generalization of the NLS equ
tion, which is associated with the quadratic bundle.

The complex Toda chain is an integrable generalization
the well-known real Toda chain~see, for instance, Refs
@3,4#!. In Refs. @3,4,7,10# the comparison of the comple
Toda chain predictions with the numerical solutions of t
NLS and MNLS equations has been performed and a g
agreement has been established for various choices o
initial parameters of the solitons in the train.

It is noted that the complex Toda chain arises as an
proximation of the evolution equations describing the int
pulse interaction in the train comprised of well-separa
solitons with nearly equal amplitudes and velocities. The
ponent of the~negative! separation between the soliton
serves as the small parameter for the asymptotic expan
and derivation of the complex Toda chain can be based e
on the variational approach~see Ref.@8#! or on the adiabatic
perturbation theory for solitons~see, for instance, Refs
@4,10#!. However, as noted in Ref.@11# the variational ap-
proach should be used with care. The approach based o
adiabatic perturbation theory is equivalent to the Karpm
Solov’ev quasiparticle method for the two-soliton intera
tions @12#. This approach was developed in Re
@3,4,6,9,10#.

If the nonlinear partial differential equation~PDE! is not
integrable but possesses stable soliton solutions, then
train propagation of solitons is described by a generali

*On leave from The Division for Optical Problems in Informatio
Technologies, National Academy of Sciences of Belarus, Kuprev
St. 1 block 2, Minsk-41, 220141, Belarus; electronic addre
valery@optoinform.bas-net.by
1063-651X/2002/65~4!/046614~10!/$20.00 65 0466
n
c-
n

ll
-

-

f

d
he

p-
-
d
-

on
er

the
-

-
.

he
d

~nonintegrable! complex Toda chain as it is pointed out
Ref. @8#.

The complex Toda chain allows a rich class of asympto
regimes of the soliton train propagation@3,6,7#: ~i! asymp-
totically free propagation of solitons,~ii ! N soliton bound
states with the possibility of a quasiequidistant propagati
~iii ! mixed asymptotic regimes when part of the solito
form bound state~s! and the rest separate from them,~iv!
regimes corresponding to the degenerate and singular s
tions of the complex Toda chain. The rich variety of dynam
cal regimes of the complex Toda chain indicates that it i
good candidate for analytical study of the soliton trains. H
we should point out that only few simple regimes are exh
ited by the real Toda chain@13,14#, thus it is essential to have
the complex Toda chain in description of the soliton train
Moreover, the phase space of the complex Toda chain~CTC!
with N nodes is 4N dimensional, which is precisely the num
ber of real parameters in the train ofN solitons.

In the present paper we consider theN-soliton train propa-
gation governed by two intimately related nonlinear PDE
one of which is integrable and the other not: the mass
Thirring model of the classical field theory@15,16# and the
optical gap system@17–30#.

For the massive Thirring model we show that the tra
propagation of well-separated solitons with nearly equal a
plitudes and rapidities is governed by the complex To
chain. Moreover, we derive a nonintegrable generalization
the complex Toda chain, which describes the train propa
tion of well-separated gap solitons with nearly equal amp
tudes and velocities.

The gap soliton propagation through a grated optical fi
was manifested in recent experiments@31–34#. The results of
Ref. @34# are of particular interest, there themultiple gap
soliton formationwas observed.

Localized solutions in nonlinear media with periodic ba
gaps have a great potential for technological applicatio
One of the most important band gap structures in optic
given by an optical fiber with periodic index grating alon
the axis. From the Floquet-Bloch theory of wave propagat
in periodic structures it is known that there are forbidd
frequency bands or band gaps for linear waves. On the o
hand, nonlinear wave propagation in such structures is p
sible for the central frequency of the wave packet lying in t
band gap. Such nonlinear wave is usually called gap soli

The optical gap system was derived within the coup

h
:
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mode approach for nonlinear wave propagation in opt
fibers with grating~see, for instance, Ref.@28#!. It reads

i ~E1T2E1X!1E21~ uE2u21ruE1u2!E150,
~1!

i ~E2T1E2X!1E11~ uE1u21ruE2u2!E250,

whereE1 and E2 are the slowly varying envelopes of tw
counterpropagating waves coupled through the Bragg s
tering induced by the grating~the linear cross-coupling
terms!, the nonlinear terms account for the self- and cro
phase modulation effects. The parameterr (r.0) at the
self-phase modulation term may range up to infinity@35#, in
which case the optical gap system models dynamics in
nonlinear dual-core asymmetric coupler@27#. Settingr50 in
the system~1! one obtains the massive Thirring model.

The gap solitons in optical fibers were studied theor
cally in many works@17–28# ~see also the latest review Re
@29#!. Recently, the relevance of the system~1! for descrip-
tion of the optical gap solitons was analytically and nume
cally validated@30#. The general family of the gap soliton
was derived in Ref.@19# using the similarity with the mas
sive Thirring model. After that, theN-soliton solutions for
the optical gap system were analytically studied via sim
approach in Ref.@36#. Recently, it was shown that the ga
soliton becomes unstable when its amplitude grows ab
some fixed value@37,38#.

The solitonlike solutions, which are similar to the ga
solitons, were found in nonlinear diatomic lattices@39–41#
and in the quadratic (x (2)) materials with a spatially periodic
linear susceptibility~grating! @42–49#. Also, it was shown
@41,44# that, at some limit, the equations governing nonline
wave propagation in quadratic media with grating and
diatomic lattices are similar to the system~1! though the
underlying physics is different.

In the following section, Sec. II, we state the main resu
of the paper on the soliton train propagation for the mass
Thirring model and optical gap system. The details of
derivation are placed in the following sections: Sec. III f
the massive Thirring model and Sec. IV for the optical g
system. The last section contains discussion of the res
and suggestions for further work.

II. MAIN RESULTS

Before formulating the main results we would like to r
call some facts about the models under study. Let us be
with the massive Thirring model of the classical field theo
@15,16#,

i ~v t2vx!1u1uuu2v50,
~2!

i ~ut1ux!1v1uvu2u50,

whereu andv are complex variables,t andx are the time and
space coordinates, respectively. The system~2! is Lorentz
invariant,

x→ x2tanh~y!t

~12tanh2 y!1/2
, t→ t2tanh~y!x

~12tanh2 y!1/2
,
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with u and v transforming as components of the Loren
spinor,

u→e2y/2u, v→ey/2v.

In the relativistic kinematics the parametery is called ‘‘ra-
pidity.’’ ~Rapidities of two consecutive Lorentz transform
tions simply add together.!

The massive Thirring model~MTM ! is integrable by the
inverse scattering transform method@16#. For instance, its
one-soliton solution can be written as

v52
i sin~2q!exp~2y/21 iQ!

cosh~z2 iq!
,

~3!

u5
i sin~2q!exp~y/21 iQ!

cosh~z1 iq!
,

where 0,q,p/2 and

z5sin~2q!cosh~y!@xo~ t !2x#,
~4!

Q52cot~2q!tanh~y!z1d~ t !.

The soliton has four independent real parameters:q, y, xo ,
andd. The first two give the soliton amplitude and rapidit
while the rest two are the soliton position and central ph
~the phase atx5xo), respectively. The position and phas
parameters depend on time,

dxo

dt
5tanhy,

dd

dt
52cos~2q!sechy. ~5!

The first equation defines the soliton velocity,V5tanhy.
By a suitable Lorentz transformation the rapidity of

Thirring soliton can be put equal to zero and the solit
solution ~3! reduces to the quiescent soliton of the mass
Thirring model.

The following ansatzis called the soliton train:

v5 (
a51

N

2
i sin~2qa!exp~2ya/21 iQa!

cosh~za2 iqa!
,

~6!

u5 (
a51

N
i sin~2qa!exp~ya/21 iQa!

cosh~za1 iqa!
,

whereza andQa are given by formulas similar to Eqs.~4!
and ~5!. It should be stressed that, for each soliton, all fo
soliton parameters in formula~6! are considered to bet de-
pendent.

The CTC for the MTM soliton train. Assume that the
N-soliton train given by Eq.~6! consists of well-separate
pulses with nearly equal amplitudesqa and rapiditiesya ,
numerated bya51, . . . ,N in such a way thatxa112xa
.0 ~here and belowxa denotes the position parameter ‘‘xo’’
for theath soliton!. Mathematically, these conditions are e
pressed as
4-2
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uqa2q̄u!q̄, uya2 ȳu!1, uxa2xa61u@1,
~7!

usin~2qa!coshya2sin~2q̄ !coshȳuuxa2xa61u!1.

Here ~and throughout the paper! q̄ and ȳ denote the aver-
ages,

q̄5
1

N (
a51

N

qa , ȳ5
1

N (
a51

N

ya . ~8!

Define the following new variables: a modified time

t5sin~2q̄ !sech~ ȳ!t, ~9!

an average phase

d̄52cos~2q̄ !sech~ ȳ!t, ~10!

and the following complex variable for each soliton:

qa52sin~2q̄ !cosh~ ȳ!xa2 i @da2 d̄2cos~2q̄ !sinh~ ȳ!xa

1ap#12a ln@2 sin~2q̄ !#. ~11!

Then in the first order of the soliton overlap parametere,

e. exp$2usin~2qa!cosh~ya!xa

2sin~2qa61!cosh~ya61!xa61u%, ~12!

the following two statements are claimed:~1! the average
values q̄ and ȳ do not depend ont; ~2! evolution of the
quantitiesqa , a51, . . . ,N, is given by the complex Toda
chain withN nodes,

d2qa

dt2
5eqa112qa2eqa2qa21, a51, . . . ,N, ~13!

where Re$q0%5` and Re$qN11%52` @i.e., x052` and
xN115`, see Eq.~11!#.

The set of inequalities~7! is similar to the inequalities for
the NLS soliton train in Ref.@4#.

Now we will formulate similar result for the train propa
gation of pulses governed by the optical gap system@28#,

i ~E1t2E1x!1E21~ uE2u21ruE1u2!E150,
~14!

i ~E2t1E2x!1E11~ uE1u21ruE2u2!E250.

The soliton solution of the optical gap system~14! moving
with the velocityV5tanhyo reads@19#

S E1~x,t !

E2~x,t ! D 5
eic(x,t)

@11r cosh~2yo!#1/2S v~x,t !

u~x,t ! D , ~15!

wherev andu have the form of a Thirring soliton, i.e., give
by formulas~3!–~5! ~with y→yo); the additional~nonlinear!
phasec is
04661
c52
2r sinh~2yo!

11r cosh~2yo!
arctan~ tanq tanhz!, ~16!

with z as in Eq.~4!.
Here it should be pointed out that the gap soliton becom

unstable when the soliton amplitudeq grows above certain
threshold (q thr'p/4, see Ref.@37#!. This scenario is also
possible for the train of gap solitons. This instability is th
result of the soliton-radiation interaction and is beyond
scope of the adiabatic approach. However, being intere
in stable gap solitons, one can impose the conditionqa
,q thr , for all a51, . . . ,N.

The ansatzwe use for the train ofwell-separatedgap
solitons is given by application of the transformation~15! to
the train of well-separated Thirring solitons~in this caseyo

5 ȳ). Due to the inequalities~7!, the additional phaseca of
each soliton in the train can be approximated by formula~16!

with q5q̄ andza5sin(2q̄)cosh(ȳ)(xa2x).
The generalized CTC for the train of gap solitons. As-

sume that the train ofN-gap solitons consists of well
separated pulses with nearly equal amplitudesqa and rapidi-
ties ya numerated bya51, . . . ,N in such a way thatxa11
2xa.0 and that the conditions~7! are satisfied. Associate
the following variable with each gap soliton:

Qa52sin~2q̄ !cosh~ ȳ!xa2 i $da2 d̄2@cos~2q̄ !

2m sin~2q̄ !~ya2 ȳ!#sinh~ ȳ!xa1ap%

12a ln@2 sin~2q̄ !#, ~17!

where

m5
4r tanh~2ȳ!

r1sech~2ȳ!
q̄.

Define the modified timet and average phased̄ as in formu-
las ~9! and~10!. Then, in the first order of the soliton overla
parametere Eq. ~12!, the following is claimed:~1! the aver-
age valuesq̄ and ȳ do not depend ont; ~2! evolution of the
quantitiesQa , a51, . . . ,N, is given by the following gen-
eralized complex Toda chain withN nodes,

d2Qa

dt2
5~11Ar!~eQa112Qa2eQa2Qa21!

1Br~eQa11* 2Qa* 2eQa* 2Qa21* !, ~18!

where Re$Q0%5` and Re$QN11%52`.
Equation ~18! is valid for arbitrary values of the self-

phase modulation parameterr.
HereAr andBr arer-dependent coefficients

Ar5 1
2 $n2km1 i @k~11n!1m#%,

~19!
Br5 1

2 $n1km2 i @k~11n!2m#%,

with
4-3
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k5
r tanh~2ȳ!

r1sech~2ȳ!

4q̄2sin~4q!

sin2~2q!
,

n5
4r~2q̄ cot~2q̄ !21!

r1sech~2ȳ!
.

Settingr50 in Eqs.~17! and ~18! one obtains the com
plex Toda chain for the soliton train of the massive Thirri
model.

III. THE CTC FOR THE MTM SOLITON TRAIN

We will use the adiabatic perturbation theory for deriv
tion of the complex Toda chain. Recently the perturbat
theory based on the Riemann-Hilbert problem was develo
for the solitons of the massive Thirring model@50#. For in-
stance, we have derived the following evolution equatio
for the soliton parameters in the adiabatic approximation

dq

dt
52

1

2 coshyE2`

` dz

cosh~2z!1cos~2q!
Re$ez@r'~k1 ,z!

1r'
* ~k1* ,2z!#%, ~20!

dy

dt
5

1

coshyE2`

` dz

cosh~2z!1cos~2q!
Im$ez@r'~k1 ,z!

1r'
* ~k1* ,2z!#22r i~z!%, ~21!

dxo

dt
5tanhy2

Re$J%

2 sin2~2q!cosh2 y
, ~22!

dd

dt
52cos~2q!sechy2

Im$J%1tanhycot~2q!Re$J%

2 sin~2q!coshy
.

~23!

Here

J5E
2`

` dz

cosh~2z!1cos~2q!
„2$2z@cos~2q!

1 i sin~2q!tanhy#1sinh~2z!%r i~z!

1$ez@cos~2q!~122z!22iz sin~2q!tanhy#1e2z%

3@r'~k1 ,z!2r'
* ~k1* ,2z!#…. ~24!

The functionsr' and r i are given by

r'~k1 ,z,t !5
ie2 iQ

2 S k1

dv
dt

2k1
21 du

dt D , ~25!

r i~z,t !5
i

4 S duvu2

dt
2

duuu2

dt D , ~26!

wherek152exp$2y/22 iq%. The ‘‘variational’’ derivatives
denote fictitious evolution of theu and v as if under the
04661
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action of the perturbation only@in other words, eitheridu/dt
or idv/dt is nothing but the perturbation added to the resp
tive right-hand side of the massive Thirring model~2!#.
Equations~20!–~26! can also be derived via the perturbatio
theory for the Thirring solitons developed in Ref.@51#.

From the point of view of the inverse scattering transfo
method theansatz~6! contains not only theN-soliton solu-
tion but also the contribution of radiation as well. Howev
due to large separations between the solitons in the train
radiation component is negligible. Thus, we can use the a
batic perturbation theory for derivation of evolution equ
tions for the soliton parametersqa , ya , xa , andda . For the
same reason, it is sufficient to consider the interaction
tween the neighboring pulses only~detailed discussion can
be found in Ref.@4#!.

First, one should compute the perturbation functions
fined in Eqs.~25! and~26!. Substitution of theansatz~6! into
the massive Thirring model~2! and expansion of the cubi
terms leads to the following formulas for the perturbatio
induced evolutions~we consider the interaction between th
neighboring pulses only!:

i
dva

dt
52 (

b5a71
~ uuau2vb12 Re$uaub* %va!,

~27!

i
dua

dt
52 (

b5a71
~ uvau2ub12 Re$vavb* %ua!,

and, consequently,

i
duvau2

dt
5 (

b5a71
2i uuau2 Im$vavb* %,

~28!

i
duuau2

dt
5 (

b5a71
2i uvau2 Im$uaub* %.

Before giving the perturbation-induced evolution of th
soliton parameters some remarks must be made on the de
of the approximation due to the inequalities~7!. The right-
hand sides~rhs’s! in Eq. ~27! contain the small parametere
@Eq. ~12!#. We consider the soliton-soliton interaction in th
first order with respect toe. Hence, due to the presence
the small parameter, the differences between theath soliton
amplitude and rapidity and the average values of these q
tities @given by Eq.~8!# are negligible in the terms accoun
ing for the intersoliton interaction.

Substitution of Eqs.~27! and~28! into Eqs.~25! and~26!
and the result into Eqs.~20! and ~21! gives the following
equations for the amplitudes and rapidities:

dqa

dt
5 (

b5a71

2 sin3~2q̄ !

coshȳ
e2uDabusinCab , ~29!

dya

dt
5 (

b5a71

4 sgn~Dab!sin3~2q̄ !

coshȳ
e2uDabucosCab ,

~30!

where

Dab5sin~2q̄ !cosh~ ȳ!~xb2xa!,
4-4
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Cab5da2db2cos~2q̄ !sinh~ ȳ!~xa2xb!.

Here exp(2uDabu)5O(e). It can be easily verified that Eqs
~29! and ~30! do not affect the average amplitudeq̄ and
rapidity ȳ.

The evolution equations forxa andda @see Eqs.~22! and
~23!# are comprised of two addends, which account for
unperturbed and perturbation-induced evolution~the latter
contain the soliton overlap parametere). Hence, one can
neglect the terms accounting for the perturbation-indu
evolution of these parameters as compared to their un
turbed evolution,

dxa

dt
5tanhya ,

dda

dt
52cos~2qa!sechya . ~31!

Now everything is ready for derivation of the comple
Toda chain. Let us differentiate the following quanti
2Dab1 iCab (b5a61):

d

dt
~2Dab1 iCab!5sin~2q̄ !sech~ ȳ!@~ya12iqa!

2~yb12iqb!#,

where the second-order terms in (qa2q̄) and (ya2 ȳ) are
dropped. On the other hand, from Eqs.~29! and ~30! one
derives

d

dt
~ya12iqa!5 (

b5a71

4 sgn~Dab!sin3~2q̄ !

coshȳ

3exp$sgn~Dab!~2Dab1 iCab!%,

or using the numerationxa112xa.0, i.e., sgn(Da,a11)
.0, for the solitons in the train,

d

dt
~ya12iqa!5

4 sin3~2q̄ !

coshȳ
~exp$2Daa111 iCaa11%

2exp$Daa212 iCaa21%!. ~32!

Introduce an average phase

d̄52cos~2q̄ !sech~ ȳ!t,

and the following complex variable associated with ea
soliton:

qa52sin~2q̄ !cosh~ ȳ!xa2 i @da2 d̄1ap

2cos~2q̄ !sinh~ ȳ!xa#12a ln@2 sin~2q̄ !#.

~The average phase in the formula forqa eliminates the con-
stant phase gradient.! Then

exp@6~qa612qa!#524 sin2~2q̄ !

3exp~7Daa616 iCaa61!.

~33!
04661
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Differentiatingqa and neglecting the second-order terms,
get

dqa

dt
52sin~2q̄ !coshȳ tanhya2 i @sin~2q̄ !sech~ ȳ!

3~2qa22q̄ !1cos~2q̄ !sechȳ tanh~ ȳ!~ya2 ȳ!

2cos~2q̄ !sinhȳ tanhya#

~here the average phased̄ plays an important role for the
expansion overqa2q̄). The second differentiation~with re-
moval of the second-order terms! gives

d2qa

dt2
52sin~2q̄ !sech~ ȳ!S dya

dt
12i

dqa

dt D . ~34!

At the same time, as it follows from Eqs.~32! and ~33! that

d

dt
@2ya2 i ~2qa22q̄ !#5sin~2q̄ !sech~ ȳ!

3~eqa112qa2eqa2qa21!.

~35!

Therefore, what is left is to introduce a new time variable

t5sin~2q̄ !sech~ ȳ!t.

Then Eqs.~34! and~35! give the complex Toda chain for th
train of Thirring solitons,

d2qa

dt2
5eqa112qa2eqa2qa21, a51, . . . ,N.

Here it is assumed that Re$q0%5` and Re$qN11%52` ~i.e.,
x052` andxN115`).

IV. THE GENERALIZED CTC FOR THE TRAIN
OF GAP SOLITONS

In the derivation of the complex Toda chain for the optic
gap system we will use a one-to-one mapping, found
cently in Ref.@50#, between the optical gap system~1! and
the following generalization of the massive Thirring mod
the g system for short,

i ~Vt2Vx!1U1uUu2V1g2~ uVu22uUu2!V50,
~36!

i ~Ut1Ux!1V1uVu2U1g1~ uUu22uVu2!U50.

The transformation relating the two systems is as follow
Let U(x,t) and V(x,t) be a solution of theg system~36!
with the following g6 :

g65
re62yo

11r cosh~2yo!
, ~37!

then
4-5
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V. S. SHCHESNOVICH PHYSICAL REVIEW E65 046614
S E1~X,T!

E2~X,T!
D 5

eic(x,t)

@11r cosh~2yo!#1/2S e2yo/2V~x,t !

eyo/2U~x,t ! D ,

~38!

where

x5
X2tanh~yo!T

@12tanh2~yo!#1/2
, t5

T2tanh~yo!X

@12tanh2~yo!#1/2
, ~39!

is a solution to the optical gap system~1! with the phasec
given by the following system of equations@in the light-cone
variablesh5(t1x)/2 andj5(t2x)/2#:

]c

]h
5

1

2
~g12g2!uVu2,

]c

]j
52

1

2
~g12g2!uUu2.

~40!

~Note that the conservation of the number of particles, i.

]

]j
uVu21

]

]h
uUu250,

ensures the compatibility of the equations for the phasec.!
Note that the coordinates are related via a Lorentz tra

formation. The mapping~38! can be verified by direct sub
stitution into Eq.~1! via simple calculations with the use o
Eqs.~37!, ~39!, and~40!.

The presented mapping is valid forarbitrary solutions of
the optical gap system. However, the importance of the m
ping ~37!–~40! stems from the fact that by choosing thequi-
escentThirring soliton,

V52
i sin~2q!eid

cosh~z2 iq!
, U5

i sin~2q!eid

cosh~z1 iq!
,

z52sin~2q!~x2xo!,
dd

dt
52cos~2q!,

which is a solution to the system~36! due to uVu5uUu, one
can recover the optical gap solitonmoving with any given
velocity V5tanhyo . In this case one obtains formula~16! for
the additional phasec. Although the optical gap system i
not Lorentz invariant, still it makes sense to callyo ‘‘rapid-
ity’’ of the gap soliton due to the transformation~37!–~40!.

A train of N well-separated gap solitons moving with a
bitrary average rapidityyo can always be represented via t
transformation~37!–~40! as a train ofN well-separatedal-
most quiescentThirring solitons. Indeed, application of th
mapping~37!–~40! to Eq.~6! with V5v andU5u, under the
conditions uyau!1 and ȳ50, yields the train ofN well-
separated gap solitons with nearly equal amplitudes and
pidities, where theaveragerapidity is equal to the given
arbitrary value yo . Moreover, if one neglects the terms
orderO(e), then the additional phaseca of each gap soliton
in the train is determined by Eq.~16! with evident changes
q→q̄, z→za , andxo→xa .

Convenience of theg system~36! for the analytical study
of gap solitons is based on the two following facts. First,
04661
,

s-

p-

a-

e

quiescent Thirring soliton satisfiesuUu5uVu. Hence, the last
terms in theg system are small if the solution under study
close to the quiescent Thirring soliton, or, in terms of t
optical gap system, the solution is close to the gap solit
Second, the parametersg6 are bounded for all values ofyo
andr ~includingr5`). Therefore, the use of the equivale
g system allows one to apply the perturbation theory dev
oped for the train of almost quiescent Thirring solitons to t
train of gap solitons forarbitrary values of the self-phase
modulation parameterr.

Hence, derivation of the complex Toda chain for the g
soliton train can be done in much the same way as the d
vation of the complex Toda chain for the train of Thirrin
solitons~more precisely, almost quiescent Thirring soliton!.
The only difference is that there are additional small pert
bations given by the terms withg6 in Eq. ~36!, theg terms
for short. Let us first calculate their contribution to the ev
lution of the soliton parameters and then calculate evolut
of qa , defined in a similar way as in the preceding sectio
with account of these terms as well.

Below we will take into account that the gap soliton tra
is transformed by the mapping~37!–~40! with yo5 ȳ to the
train of almost quiescent Thirring solitons~in the variablesV
andU). For instance, the latter train hasȳ50 and uyau!1.
Consider theath soliton in such train. From Eq.~36! one
gets, expanding the cubic terms,

i
dVa

dt
52 (

b5a71
~ uU au2Vb12 Re$UaUb* %Va!2g2~ uV au2

2uU au2!Va2 (
b5a71

g2~2uV au2Vb1V a
2Vb*

2uU au2Vb22 Re$UaUb* %Va!.

Let us separate the rhs into two parts. The first part is just
same as in the case of the massive Thirring solitons, w
the second, given by the following formula,

i S dVa

dt D
g

52g2~ uV au22uU au2!Va2 (
b5a71

g2~2uV au2Vb

1V a
2Vb* 2uU au2Vb22 Re$UaUb* %Va!, ~41!

is due to theg perturbation and is specific for the gap solito
train only. I will consider, in detail, only theg perturbation
since the first part is accounted for in just the same way
the train of almost quiescent Thirring solitons with the sa
resulting formulas.

In formula ~41! the first term on the rhs is due to th
self-interaction of the gap soliton@due to theg terms in Eq.
~36!, if the rapidityyaÞ0#, the rest account for the intersol
ton interaction in the train. The latter terms contain the sm
parametere defined in Eq.~12!. We will use the same ap
proximation that has been used for the derivation of the co
plex Toda chain for the massive Thirring model. Additiona
one can neglect the difference between the modules ofVa
andUa when calculating the contribution from the interso
ton interaction terms. This is because the intersoliton in
4-6
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action terms already contain the small parametere and uyau
!1, thus one can putya50 there. Then, the ‘‘variational’’
derivatives simplify considerably,

i S dVa

dt D
g

52g2~ uV au22uU a u2!Va

2 (
b5a71

4g2 sin~Cab!Im$VoaUob%Va ,

~42!

i S dUa

dt D
g

52g1~ uU au22uV au2!Va

2 (
b5a71

4g1 sin~Cab!Im$UoaVob%Ua ,

~43!

where Voa5exp$2ida%Va , Uoa5exp$2ida%Ua , and Cab
5da2db . Formula~43! obtains from Eq.~42! by the evi-
dent substitutionV→U, U→V, andg2→g1 . Note that from
formulas~42! and ~43! it follows that

S duV au2

dt D
g

50, S duU au2

dt D
g

50.

Consider first the contribution to evolution of the solito
parameters coming from the intersoliton interactiong terms,
i.e., the first terms on the rhs’s in formulas~42! and ~43!.
First, the perturbation functions given in Eqs.~25! and ~26!
must be calculated. The intersoliton interaction terms g
the following contributions to the necessary function
r i(za)50 and

r'~ka ,za!1r'
* ~ka* ,2za!

52 (
b5a71

8i
sin4~2q̄ !e2uDabusin~Cab!

@cosh~2za!1cos~2q̄ !#2
sinh~2za!

3@~g12g2!eza1~g1e2i q̄2g2e22i q̄!e2za#, ~44!

whereka52exp$2ya2iqa% andDab5sin(2q̄)(xb2xa). @On
the rhs of Eq.~44! the terms of the second order inqa2q̄
are neglected due to the small multiplier exp(2uDabu)5O(e).#
Now, substitution of the expression~44! into Eqs.~20! and
~21! leads to the following contributions to evolution equ
tions for qa andya :

S dqa

dt D
g

50,

S dya

dt D
g

52 (
b5a71

4k sin3~2q̄ !e2uDabusinCab ,

where
04661
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:

k5
r tanh~2ȳ!

r1sech~2ȳ!

4q̄2sin~4q!

sin2~2q!
.

What concerns the other two parametersxa and da , simi-
larly as in Sec. III, the intersoliton interaction is of ord
O(e) and its contribution to evolution of the soliton positio
and phase can be neglected as compared to their unpertu
evolution.

Now let us consider the contribution to evolution of th
soliton parameters coming from the self-interactiong terms,
i.e., the first terms in Eqs.~42! and ~43!. We get the follow-
ing contributions to the functions in Eqs.~25! and ~26!:

r i~za!50, r'~ka ,za!1r'
* ~ka* ,2za!50, ~45!

r'~ka ,za!2r'
* ~ka* ,2za!

5
4i sin3~2qa!ya

@cosh~2za!1cos~2qa!#2

3@~g22g1!eza1~g2e22iqa2g1e2iqa!e2za#

~46!

~here it is taken into account that terms of the second orde
ya are negligible!. From Eq.~45! it follows that the contri-
butions from the self-interactiong terms to evolution equa
tions for the amplitudeqa and rapidity ya vanish, while
substitution of Eqs.~45! and ~46! into Eq. ~24! gives due to
uyau!1,

Ja52$~g21g1!@2 sin2~2qa!22qa sin~4qa!#

1 i ~g22g1!2qa sin2~2qa!%ya .

Thus the contributions from the self-interactiong terms to
evolution ofxa andda are determined by the following co
efficients:

na52
Re$Ja%

2 sin2~2qa!ya

5~g21g1!@4qa cot~2qa!22#,

ma52
Im$Ja%

2 sin2~2qa!ya

5~g12g2!2qa .

We can take just the average values of these coeffici
~denoted below asn and m), because the following combi
nationsnaya andmaya will enter the evolution equations fo
the soliton parameters anduyau!1. In other words, one can
throw away the terms of the second order inqa2q̄ andya .
Taking into account the definition of theg6 , whereyo5 ȳ,
we obtain

n5
4r@2q̄ cot~2q̄ !21#

r1sech~2ȳ!
, m5

4r tanh~2ȳ!

r1sech~2ȳ!
q̄.

Let us collect all the contributions, i.e., the terms same
for the Thirring soliton train@see Eqs.~29!–~31!# and those
4-7
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accounting for theg terms, and write down the correspon
ing evolution equations for the parameters of theath gap
soliton. They read

dqa

dt
5 (

b5a71
2 sin3~2q̄ !e2uDabusinCab , ~47!

dya

dt
5 (

b5a71
4 sin3~2q̄ !e2uDabu@sgn~Dab!cosCab

2k sinCab#, ~48!

dda

dt
52cos~2qa!1m sin~2q!ya , ~49!

dxa

dt
5~11n!ya . ~50!

Here

Dab5sin~2q̄ !~xb2xa!, Cab5da2db .

It is easy to see that the averagesq̄ andȳ are not affected by
Eqs.~47! and ~48!. Equations~47!–~50! are similar to those
for the ~almost quiescent! Thirring solitons, however, there
are additional terms in the evolution equations forya , da ,
andxa .

Let us now derive the generalized complex Toda ch
corresponding to Eqs.~47!–~50!. As the derivation is quite
similar to that for thequiescentThirring solitons we will skip
some details. As in the case of the massive Thirring mo
introduce the modified time

t5sin~2q̄ !t,

an average phase

d̄52cos~2q̄ !t,

and the complex variableqa for each soliton,

qa52sin~2q̄ !xa2 i ~da2 d̄1ap!12a ln@2 sin~2q̄ !#.
~51!

Differentiating qa and throwing away the second-ord
terms, one obtains

dqa

dt
52$~11n1 im!ya1 i @2qa22q̄#%.

Differentiation of this formula gives

d2qa

dt2
52 (

b5a71
4 sgn~Dab!sin2~2q̄ !

3exp$sgn~Dab!~2Dab1 iCab!%

2~n1 im!Re (
b5a71

4 sgn~Dab!sin2~2q̄ !
04661
n

l,

3exp$sgn~Dab!~2Dab1 iCab!%

1k~11n1 im!Im (
b5a71

4 sgn~Dab!sin2~2q̄ !

3exp$sgn~Dab!~2Dab1 iCab!%,

taking into account the numeration of the solitons in t
train, which is given byxa112xa.0 or Daa11.0, and the
following identity:

4 sin2~2q̄ !exp$6~2Daa611 iCaa61!%

52exp@6~qa612qa!#.

We obtain a generalized complex Toda chain for the train
N well-separated gap solitons with nearly equal amplitud
and rapidities

d2qa

dt2
5~11Ar!~eqa112qa2eqa2qa21!

1Br~eqa11* 2qa* 2eqa* 2qa21* !, ~52!

whereAr andBr arer-dependent coefficients

Ar5 1
2 $n2km1 i @k~11n!1m#%,

Br5 1
2 $n1km2 i @k~11n!2m#%.

As usual, Re$q0%5` and Re$qN11%52`.
Though in Eq.~52! and in the definition ofqa Eq. ~51! we

still have the variablest, xa , da , andd̄ defined through the
coordinatesx andt @see formula~39!#, it is easy to reverse to
the coordinatesX andT of the optical gap system~1!. Indeed,
to this end one should use the transformation~39! ~with yo

5 ȳ) for the positionxa and the central phaseda of the gap
soliton ~the phase atX5Xa),

xa5cosh~ ȳ!@Xa2tanh~ ȳ!T#, ~53!

da5@2cos~2qa!1m sin~2q̄ !ya#t5@2cos~2qa!

1m sin~2q̄ !ya#cosh~ ȳ!@T2tanh~ ȳ!Xa#. ~54!

Also one must use the time transformationdT5cosh(ȳ)dt in
the definition oft and the average phased̄,

t5sin~2q̄ !sech~ ȳ!T, d̄52cos~2q̄ !sech~ ȳ!T.

Now it is evident that if Eq.~53! is used in the definition of
qa , Eq.~51!, the term linear inT will not contribute to either
the differenceqa2qb or the second derivative ofqa , hence,
it can be dropped. Further, notice that from the rhs of E
~54! only the term linear inT will appear in qa , if one
simply changes the timet→sech(ȳ)T. Hence, the term pro-
portional toXa in Eq. ~54! must be subtractedfrom the cen-
tral phaseda . In doing so, one can neglect the differen
betweenqa and q̄ due to the inequalities~7! and that evo-
4-8
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lution of qa is of order O(e) ~i.e., we throw away the
second-order terms from the second derivative ofqa). Thus
we have arrived precisely at the quantityQa given by Eq.
~17!, where the shift of the soliton rapidities is taken in
account, ya→ ȳ1ya . Therefore, the result of Sec. II i
proven.

V. COMMENTS

The complex Toda chain model proves to be a unive
model for the adiabatic description of the train interactio
propagation of solitons in nonlinear PDEs. Indeed, it w
shown to describe the train propagation of pulses in the n
linear PDEs of the whole NLS hierarchy@9# ~i.e., the PDEs
associated with the familiar Zakharov-Shabat spectral pr
lem @52,53#!. More recently, the complex Toda chain w
derived for the soliton train of the modified NLS equatio
@10#. This PDE is associated with the quadratic bundle, a
known as the Wadati-Konno-Ichikawa spectral problem@54#.

In this paper, the complex Toda chain is shown to desc
the soliton train propagation in the massive Thirring mod
Note that, as it is mentioned in Ref.@10#, the massive
Thirring model is just another representative of the modifi
NLS hierarchy. Thus the complex Toda chain arises in
adiabatic description of the soliton trains in the hierarchy
nonlinear integrable PDEs associated with the quadr
bundle as well. This is in favor of the universality of th
complex Toda chain.

In construction of the perturbation theory for the mass
Thirring model we have used the associated Riemann-Hil
problem @50#. The use of the Riemann-Hilbert problem a
lows one to develop the perturbation theory in a unified w
for the entire hierarchy~see, for instance, Ref.@55#, where
this was done for the vector NLS hierarchy!. Moreover, the
perturbation-induced evolution equations for the spec
data have one and the same form forall integrable PDEs
~one can compare the results of Refs.@56,57#!. This gives a
possibility to prove the universality of the complex Tod
chain using the approach based on the Riemann-Hil
problem. This is one of the directions for future work.

In view of recent experimental observation@34# of the
multiple gap soliton formation in optical fibers with inde
grating, it is important to have an analytical approach
description of interaction of optical gap solitons. Some a
lytical results in this direction are already contained in R
@36#, where the authors consider theN-soliton solutions to
ry

v,

i-
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the optical gap system. In the present paper this approac
further developed and it is shown that the train interacti
propagation ofN-gap solitons with nearly equal amplitude
and velocities is governed, in the adiabatic approximati
by a generalized complex Toda chain withN nodes.

Here we should mention that, due to nonintegrability
the optical gap system, the train of gap solitons may beco
unstable. Such instability can be the result of the solito
radiation interaction and is beyond the adiabatic approxim
tion. However, the gap soliton is stable against the effec
radiation if the soliton amplitude lies below the instabili
threshold~see for details Ref.@37#!. For such values of the
soliton amplitudes, the generalized complex Toda chain~18!
can be applied.

Spurious instabilities of the complex Toda chain are a
possible for some initial values, as was pointed out in R
@4#. Such instabilities do not correspond to instabilites of t
soliton train propagation in the original PDE. However, r
cently, it was indicated@8# that the generalized complex Tod
chains~for the soliton train propagation in the perturbed NL
equations! admit more stationary regimes of the train prop
gation than the~integrable! complex Toda chain does. Sim
lar fact can be true for the gap soliton train propagation. T
issue is important in view of applications of the gap solito
and it will be addressed in a future publication.

Though the generalized complex Toda chain is not in
grable, it is a finite dimensional dynamical system and can
investigated by the standard techniques. Moreover, in ac
dance with discussion of Ref.@9#, one can systematically
include various additional perturbations of the optical g
system into the complex Toda chain. For instance, to add
the issue of stability of the soliton train, one can study t
interaction of the solitons in train with radiation waves b
using the perturbation theory.
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